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Asymmetry of Stark profiles

The microfield point of view
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Abstract. The theoretical basis is presented that allows to compute the Stark broadened line shapes of
atomic ions up to the quadrupole terms in the interaction potential between the radiator and the plasma
electric microfields and their gradients. The nature of the corrections due to the plasma polarization effects
associated with the electron distribution around ion perturbers are carefully analyzed. The relevant universal
plasma functions are evaluated in a cluster expansion or by Monte Carlo simulations, and the line shape
is calculated with ion dynamic effects by the Model Microfield Method. The asymmetry of the Lyman α
line of hydrogenic ions is then studied.

PACS. 32.70.Jz Line shapes, widths, and shifts – 95.30.-k Fundamental aspect of astrophysics –
95.30.Dr Atomic processes and interactions

1 Introduction

The spectral lines of hydrogen-like radiators immersed
in plasmas show noticeable asymmetry and often mea-
surable shifts at high densities [1–27]. This reflects the
fundamental properties of hydrogen-like radiators as a
tiny quantum-mechanical probes of the plasma-radiator
interaction. The understanding of these properties pro-
vides the basis of sensitive spectroscopic diagnostics for
experimental studies, for example, ICF [7,8]. In a first
approximation, the line shapes of transitions in hydrogen
and hydrogenic ions are due to the interaction between the
bound electron and the plasma electric microfield, leading
to symmetric linear Stark energy splitting of the degen-
erate parabolic eigenstates (n, n1, n2,m). Thus the line
shapes are symmetrical around the line center. An intrin-
sic source of the line asymmetry in the absence of any
external perturbation is due to the fine structure effects.
Another asymmetry is observed when plasma density is in-
creasing. Depending on the plasma parameters this asym-
metry in the profile can be attributed to several sources
like high-order terms in the multipole expansion of the
radiator-plasma interaction potential (quadrupole terms,
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quadratic Stark effect etc.), Boltzmann factors versus the
detuning from the line center, dielectronic satellites, dif-
ferences in the field ionization rates and electronic colli-
sion shifts of the symmetrically split Stark components
[9,10,15].

The theoretical estimation of the contribution from
ion quadrupole effects has changed many times [9,15]. Re-
cently, the quantum mechanical calculations of the elec-
tronic shifts and line asymmetry of hydrogenic lines using
the Green-function technique [19,20], indicate the domi-
nant contribution of the quadrupole effects in the case of
Balmer lines. However, the inclusion of quadratic Stark
effect in the whole series of papers [19–22] was performed
inconsistently1.

The line shape asymmetry in plasmas, which is asso-
ciated with the quadrupole contribution induced by the
electron-radiator and ion-radiator interaction, is mainly
due to differences in the electron-radiator and ion-radiator
interactions, which have opposite signs. First, the spa-
tial distributions of the plasma electrons and ions in
the vicinity of a charged radiator differ strongly (leading

1 The asymptotic character of the multipole expansion of the
interaction potential requires the inclusion of all terms of the
same order [9]. Thus, the inclusion of quadratic Stark effect
(which affects both the energy and the eigenstates of the ra-
diator) has to be performed together with the second-order
quadrupole effect, octupole effect, etc. [9,15].
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to local microscopic departure from the average plasma
quasineutrality). Moreover, the effective time scale of the
process changes with the detuning from the line center.
Thus, as the electron-radiator and the ion-radiator inter-
actions have different intrinsic time scales, their influence
on the line shape at the same value of detuning may differ
and do not necessary cancel each other.

The aim of the present paper is to calculate the line
shape with the effects of ion dynamics in the nonuniform
microfield. The quadrupole radiator-plasma interaction
has many-body nature: the exact theoretical treatment of
the line shapes in the nonuniform microfield includes the
statistical average over the ion microfield F and its five in-
dependent nonuniformity tensor components ∂Fi/∂xk. It
is thus very complicated computationally and has never
been fully performed [9–26]. A generalized self-consistent
Baranger-Mozer cluster expansion method was proposed
recently to construct W (F; {∂Fi/∂xk}) – the joint distri-
bution function of the ion microfield and of its nonuni-
formity tensor [11,12,15–17]. This tensor determines the
value of the quadrupole part of the plasma-radiator in-
teraction potential [10]. The adopted approach provides
statistical description to all terms in the interaction po-
tential of the same order of magnitude in the parameter
n2a0/ZNR0 (n – the principal quantum number, a0 – Bohr
radius, R0 – mean distance between plasma charges, ZN –
nuclear charge of the radiator). Thus terms proportional
to R̂2divF are also included (where R̂2 is square of the
electron position operator of the radiator), that were ne-
glected before. For an ion-perturber potential screened by
the plasma electrons these terms are due to the nonuni-
form distribution of the electron charge cloud around the
perturbing plasma ions. That is why in [12,14–17] this part
of interaction was associated with plasma polarization.

In practice, the theoretical treatment of the line shape,
including the field nonuniformity contribution, is reduced
to the calculation of the first moments of the joint dis-
tribution W (F; {∂Fi/∂xk}) over the components of the
microfield nonuniformity tensor, which can be expressed
through the two universal functions BD and BDO [12,15,
16]. In the multipole expansion of the plasma ions-radiator
interaction potential, the first function enters through a
product with the traceless tensor of the quadrupole mo-
ment Q̂. The second function BDO is connected to the
scalar part of interaction potential proportional to R̂2, in-
duced by the above mentioned polarization effects. These
functions were studied together in the Baranger-Mozer
(BM) formalism and by Monte Carlo (MC) simulations
for various plasma conditions in previous work [16,18],
showing a good mutual agreement in their common range
of validity. The MC approach is also considered to obtain
results valid for strongly coupled plasmas.

The averaged moments of the quadrupole interaction
is substituted directly in the Hamiltonian of the radiator
[15,24]. The relevant statistical functions BD, BDO and
the field distribution function P , obtained by MC or BM
methods, are used in calculations of the quasistatic profiles
of hydrogen-like radiators with account of the quadrupole
interaction [15,24]. The electron-radiator interaction is

performed conventionally in terms of an electron relax-
ation operator M(ω), which in general depends on the
frequency ω [28,29]. The profiles containing quadrupole
effects serve as an input for the computation of the dy-
namic profiles in the Model Microfield Method [44,45].

The paper is organized as follows. Section 2 explains
the connection between the electric microfields and the
electric potentials, and the influence of the nonuniform
distribution of charges. It also gives the expression for
the plasma-radiator interaction potential with polariza-
tion terms. Section 3 presents the BM and MC approaches
which are used for computing the universal microfield
functions. Section 4 gives the basis of the line shape the-
ory in the Model Microfield Method, which is used for the
full scale calculations. In Section 5 results are given for
the Lyman α line of the He+ and Ar17+ ions.

2 Theory

2.1 Plasma microfields

It follows from the above analysis that the problem must
be considered step by step. This is the objective of
this work, which is devoted to the influence of the ion
quadrupole effects on the line asymmetry, when ion dy-
namic effects are also taken into account. The fine struc-
ture effects and electronic shift effects will be neglected.

For simplicity we shall restrict the study to a plasma
in a volume V, consisting of identical ions, with charge Z
and a hydrogenic radiating ion of nuclear charge ZN (net
charge Z = ZN − 1). The condition of quasineutrality is

N = Ne = ZNi, (1)

where Ne is the electron plasma density at the infinity and
Ni is ionic density.

We shall denote the mean distances between the elec-
trons and the ions by R0 and Ri respectively.

Ions and electrons move with different time scales.
This allows to consider separately for the line shape prob-
lem the ionic microfield (also called Low Frequency, LF),
which is due to effective ions moving with a polarized elec-
tronic background, and the electronic microfield (High
Frequency, HF) which is due to point charge electrons
moving on a neutralizing ionic background. This means
that the two microfield processes are statistically indepen-
dent. These two pictures have been used to calculate the
distribution function [30,31] of the LF microfield created
by singly-ionized positive ions either on a neutral point
or on an other ion of the same charge and the HF dis-
tribution function of the microfield due to electrons on a
neutral point or on another electron.

The electrostatic potentials Φ(i),(e)(r), created by these
charges, the ionic and electronic fields, F,E, which are
derived from them, their gradients and divergences are the
sum of different elementary potentials φ(i),(e)(r), electric
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fields F ,E..., i.e.

Φ(i)(r) =
∑
k

φ
(i)
k (r) (2)

Φ(e)(r) =
∑
j

φ
(e)
j (r) (3)

F(r) =
∑
k

Fk(r) (4)

E(r) =
∑
j

Ej(r). (5)

The divergence of the field is equal to the Laplacian of
the electrostatic potentials and satisfies the Poisson equa-
tion, which is given for the elementary ionic and electronic
potentials by

∆φ(i)(r) = 4πρe(r) − 4πeZδ(r) (6)

∆φ(e)(r) = −4πρi(r) + 4πeδ(r). (7)

For the line shape problem, the fields are calculated at
the origin of the reference frame, where the radiating
atom is located. Thus ρi(r) in equation (7) reflects the
distribution of perturber ions around this radiator ion,
i.e. (ρi(r) = NiZegii(r)). For a neutral radiator the dis-
tribution of ionic charges in its vicinity is uniform, i.e.
ρi(r) = NiZe. Substituting ρe(r) = Neegie(r) in equa-
tion (6), the averages of ∆Φ(i) (Eq. (6)) over the positions
of the perturbing ions and of ∆Φ(e) (Eq. (7)) over the
positions of the perturbing electrons cancel each other in
the Poisson equation for the averaged potential of all the
plasma charges, as expected from plasma quasineutrality
and symmetry relations. One has

〈∆Φ(i)〉 = (1/V)4πNee

∫
gii(r)gie(r) d3r

= 4πNeeBG. (8)

For gii = gie = 1, which corresponds to the One Compo-
nent Plasma (OCP) model [32] for the electron and the
ions, one finds BG = 1.

2.2 Plasma-radiator interaction

The interaction potential V̂ between the radiator and the
plasma free charges is composed of two parts, the radiator-
electron interaction V̂ (e), and the radiator-ion interaction
V̂ (i). For small distances R of the optically active electrons
from the radiator nucleus, compared to the distances from
ion perturbers, the multipolar expansion of the Coulomb
interactions may be used. In terms of the total electric field
of the electrons E and of the total electric field of ions F,
this gives to the first-order in the parameter n2a0/ZNR0,

V̂ = V̂D + V̂Q + V̂BG (9)

with

V̂D = −D̂ · (F + E) (10)

V̂Q = +
1
6

∑
i,j

Q̂ij

(
∂Fi
∂xj

+
∂Ei
∂xj

)
(11)

V̂BG = −e
2

6
R̂2(divF + divE), (12)

where D̂, Q̂ and R̂ are the dipole, quadrupole and position
operators of the bound electron. The indices i, j... denote
the Cartesian components (x, y, z) (for example ∂Fx/∂y).
The operator V̂BG is due to plasma polarization.

The present description of the interaction potential V̂
between the bound electrons and the plasma presupposes
the validity of the plasma microfield approach. This means
that the perturbers do not penetrate inside the area of the
bound electron orbits. In the case of an ionic radiator, the
probability for an ion to be very close to the radiator is
small, due to the Coulombic repulsion. This is not the case
for the electrons, which are attracted by the net positive
charge of the radiator. The treatment of these short range
electron-ion interactions is beyond the scope of the present
study. As a consequence, the Dirac delta functions in the
equations (6, 7) for the microfields make no contribution
to the line shape. Thus in the radiator-ion and radiator-
electron interaction potentials in equation (12) we exclude
the Dirac delta functions and denote this by the notation
div′(F) and div′(E) or equivalently ∆′Φ(i) and ∆′Φ(e).

The rapidly varying electronic and slowly varying ionic
fields may be considered as statistically independent. Af-
ter separation of the electron and ion interactions one ob-
tains the following expression for the ionic potential V̂ (i)

BG

V̂
(i)

BG = −e
6
R̂2div′(F), (13)

which is valid for any choice of the elementary interaction
potential between each plasma ion and the radiator. Note
that in the previous works, which were based on a colli-
sional picture, div′(F) was zero because no neutralization
charge was considered [9,10].

There are obvious limits to the applicability of the no-
tion of a neutralizing static background in the context of
the line shape calculations. Indeed, this will be valid for
large time intervals, i.e. in the line centers (∆ω � ωpe). At
sufficiently large detunings in the wings (∆ω ≥ ωpe), the
line shape is sensitive to the interaction with the charge
which is the nearest to the radiator, regardless of its sign
and of the existence of other charges. Thus in the far wings
one may forget about the contributions from ∆φ, which
is effectively the case. Whereas the static electron screen-
ing is, strictly speaking, inadequate for the full line shape
calculation problem, it may be used in the line center.

As explained in the introduction, one replaces the
quantities ∂Fα/∂xβ and ∆Φ(i) in the expression of the
line shape by their constrained averages over the field,
the value of the total ionic field being fixed. This approxi-
mation, which makes it easier to calculate the line shapes,
is justified by the fact that the expansion of the resolvent
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up to the first-order in the constrained averages is identi-
cal with first-order perturbation theory in the line shape
expression.

Thus, supposing F parallel to the Oz axis and replac-
ing D̂z by −eẐ and Q̂zz by −e(3Ẑ2 − R̂2), one obtains

〈V̂i〉F = eẐF0β −
πe2Ne

3
(3Ẑ2 − R̂2)BD(β)

−2πe2Ne

3
R̂2(BDO(β)−BG). (14)

where BG, defined in equation (8), includes explicitly the
cancellation effects of the electrons V̂ (e)

BG, as discussed at
the end of Section 2.1. In this equation the universal func-
tions BD(β) and BDO(β) are defined by〈

∂Fz
∂z
− 1

3
∆′Φ(i)

〉
β

=
4πNee

3
BD(β), (15)

and

〈∆′Φ(i)〉β = 4πNeeBDO(β). (16)

The scaled electric field β is given by,

β = F/F0 with F0 = 2π(4/15)2/3eN2/3
e , (17)

and from the equations (6–8) one verifies that

BG =
∫ ∞

0

dβ P (β)BDO(β), (18)

where P (β) is the field distribution function.
The values of these universal functions depend on the

choice of the elementary potential φ(i)(r) between the
plasma ions and the radiating ion, and on the theoreti-
cal approach to their calculation.

Due to their short time scales, the electron interaction
is commonly described by a conventional electron broad-
ening operatorM(∆ω), calculated with the potential V̂ (e).
If the electronic contribution to the background has been
already subtracted from the ionic one, as this is the case
here, the potential V̂ (e) does not include the background
contribution V̂ (e)

BG.
Including only the dipole part of the potential and

supposing that the ionic field is static, the eigenstates of
the Hamiltonian are the parabolic states |nn1n2m〉 with
n = n1 +n2 + |m|+ 1. These states are mixed together by
the quadrupole effects. The relevant matrix elements are
given in the Appendix.

3 Computations of the universal microfield
functions

3.1 Choice of ion-radiator potential

In our numerical computation the Debye potential is used
for the ion-radiator interaction. Thus one has for the el-
ementary electrostatic ionic potential, electric fields and

modified divergence (Eqs. (2–5))

φ(r) = eZ exp(−αr)/r, (19)

F(r) = ∇φ(r) = −eZr
r3

(1 + αr) exp(−αr), (20)

div′F(r) = ∆′φ(i) = eZα2 exp(−αr)/r, (21)

where α is equal to the inverse of the electronic Debye
screening length.

The average of div′F over the ion positions is equal to
the averaged electronic screening charge of the perturb-
ing ion weighted by the ion(i)-radiator(r) pair distribution
gir(r) ∫ ∞

0

dβ P (β)〈∆′Φ(i)〉β = 4πNeeψir(α) (22)

with

ψir(α) = α2

∫ ∞
0

r dr exp(−αr)gir(r). (23)

Thus

BG = ψir(α). (24)

In the case of a neutral radiator, gir(r) is equal to unity,
and one has ψir(α) = 1. In the case of an hydrogenic
radiator, ψir(α) is less than unity, due to the Coulomb
repulsion at short distances, where gii(r) differs locally
from unity.

3.2 Numerical Monte Carlo simulations

Numerical Monte Carlo (MC) simulation is a powerful
method for studying the equilibrium states of a plasma
composed of point charged particles. In a previous paper
[16], we described in detail the Metropolis Monte Carlo
procedure we have used, in which the originality is es-
sentially due to the use of a spherical approximation to
the potential, appropriate to the symmetry of the plasma
for the plasma parameters considered [33]. The spherical
approximation of the potential leads to an analytic ex-
pression for the effective binary ionic Yukawa potential,
depending only on the modulus of the distance between
the pair of ions. Gain in memory storage and time com-
puting is achieved without loss of precision for microfield
applications. This approximation for the potential has also
been recently checked against precise Monte Carlo calcu-
lations performed on a hypersphere [34,35].

The simulations are performed in a cube with periodic
boundary conditions, applying the standard Ewald proce-
dure [36]. The particles interacts via Yukawa type screened
ionic interaction potentials. We use the general expression
for the electronic screening length, which is a temperature
and density dependent Thomas-Fermi screening length
[37]. This expression is valid for a wide range of plasma
parameters and converges towards the Debye-Hückel limit
for low correlation parameters.
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MC calculations are subject to systematic errors. In
order to get the maximum precision, the simulations have
been performed with a large number (600) of ions. But
in highly ionized dense plasmas not so many particles are
required, because in that case the binary pair potentials
are short ranged.

The MC code uses the Metropolis algorithm to accept
and reject the configurations. Typical runs need about
100 000 representative configurations of the point ions (but
often less). Thus means and histograms are achieved with
100 000× 600 samples, which is large enough for the pre-
cision needed for microfield distribution results (about
10−2).

It must be noted that the chosen cell size is larger
than the electronic screening length, thus preserving the
quasineutrality during the simulation.

3.3 The cluster expansion

Baranger and Mozer (BM) introduced a simple cluster ex-
pansion for the Fourier transform of the microfield distri-
bution functions and terminated the series at the second
order. Other authors [38,39] have shown that this second-
order BM theory agrees with Hooper’s ([40,41] results for
a large range of weakly correlated plasma conditions. This
second-order cluster expansion method has been extended
by Demura [11,12] to the joint distribution function of
the field and its spatial and time derivatives. It requires
the knowledge of the variations with the distance of the
pair distribution functions and of the elementary electric
fields, and uses the Kirkwood approximation to disentan-
gle the triple correlations. In practice it has been applied
to Debye-Hückel screened electric fields and pair distribu-
tion functions. Here the universal function BDO has been
calculated only to the first-order in the cluster expansion.
We have performed extended comparisons with MC sim-
ulations for P (β), BD and BDO. The overlap between the
two methods for moderate coupling parameters and low
screening gives a confidence in both computations in this
density range.

3.4 Asymptotic limits

The asymptotic OCP-Nearest-Neighbor (NN) approxima-
tion for the microfield distributions and for BD and BDO

has been already given in [16]. In the case of BDO, the con-
stant ψir(α) due to the background (Eq. (23)) was omitted
(Eq. (54) of [16]).

It was shown that for small and moderate couplings,
MC and BM converge toward the NN limit. For higher
couplings, BM is no longer valid but MC converges to-
wards the NN limit for reduced field values β of about 10.
The discrepancy between exact and NN limit decreases
with the coupling.

3.5 Alternative theories

The Adjustable Parameter Exponential Approximation
method (APEX) has been proposed to calculate the field

distribution function in the case of highly correlated plas-
mas and has been generalized for weakly correlated plas-
mas [42,43]. It is based on an independent quasiparticle
model. Each of these particles produces at the test point
a parameterized APEX electric field, with the inverse of
the screening length given by the adjustable parameter ζ.
This model has been shown to provide accurate results
for the field distributions of both high and low frequency
components. In this approximation, the second field mo-
ment of the distribution is expressed as a function of the
fitting parameter ζ which is determined from the special
exact well-known constraint on 〈E2〉 (see Eq. (2.13) of
[42]), which gives

〈E2〉(ζ) = 4πNikTψir(α), (25)

where ψir(α) defined in equation (23). The BD function
has been calculated in this scheme by Kilcrease et al. [25].
Comparisons with MC [16] and MD [26] results show that
the APEX model gives accurate results for P but is less
appropriate for the field gradient calculations. More pre-
cisely, our extensive comparisons between MC and APEX
results for the BD function, in case of pure argon at kT =
800 eV and for various densities between Ne = 1021 cm−3

and Ne = 1025 cm−3, show large discrepancies. At small
field values, this discrepancy decreases with increasing
density, but is still visible at 1025 cm−3. At large field val-
ues the discrepancy increases with increasing density. In
particular, the APEX data diverge from the expected NN
limit. As these large fields values have a small probabil-
ity, their contribution to the line intensity and asymmetry
may be not so important in the line center.

4 The line shape

The line shape and shift are determined by the interac-
tions with the slowly moving plasma ions and the very
rapidly moving free electrons. Due to these different time
scales the electronic contribution to the line can be, for
each value of the ionic microfield, included through a
damping operator M(∆ω) which depends on the detun-
ing ∆ω from the line center. This operator M(∆ω) (which
may have non-diagonal matrix elements) can be obtained
either within quantum mechanics or using a semi-classical
approximation, which means that the motions of collid-
ing electrons are treated classically (i.e. with rectilinear
trajectories for the electron-neutral interactions or hyper-
bolic trajectories for electron-ion interactions). As the line
width and asymmetry are dominated by ionic effects, a
semi-classical treatment of electron-radiator interaction
is sufficient as a first step. Thus we shall use the semi-
classical perturbative description, which is valid in the line
center, as long as the detuning from line center ∆ω is not
too large compared with the electron plasma frequency
ωpe. The electronic contributions to the width and shift
are connected to the real and imaginary parts of M(∆ω)
respectively.

The generalized line-shape expression is given in
Liouville space in terms of the Fourier transform, T (ω),
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of the Liouville evolution operator. Hereafter we shall de-
note by |aα〉〉 the basis vectors of the Liouville space, where
a, b... are for the lower level of the transition and α, β...
for the upper levels. In the present work, which is mainly
devoted to the ionic contribution to the line shape, we
shall use the “no quenching” approximation. This means
that the ionic electric field mixes together only the states
nlm with the same principal quantum number n. Thus
the states a, b, c... (and α, β, γ...) are mixed together by
the Coulomb potential whose expression is given in equa-
tion (14). One has for the line shape

I(ω) =
∑

k,aα,bβ

raa〈a|Dk|α〉〈β|Dk|b〉〈〈aα|Tav(ω)|bβ〉〉,

(26)

where Dk = ek ·D is the Cartesian component k of the
dipole operator responsible for the optical transition be-
tween the states a, b, c... and α, β, γ... The quantity raa is
the statistical weight of state a, and Tav(t) is the average
of the evolution operator T (t) over all the initial positions
and velocities of the plasma charges. As the states a, b...
are supposed to be equally populated, one can drop the
term raa = r0 from the line shape expression. This allows
us to normalize the line profiles I(ω) to

r0
∑
aα,k

|〈a|Dk|α〉|2 = r0
∑
aα

Saα, (27)

where Saα is the usual line strength. As a consequence,
the profile I(ω) is normalized to unity.

The Liouville operator T (t) satisfies the equation of
evolution:

i~
dT (t)

dt
= LT (t) with T (0) = 1, (28)

where the Liouville operator L is connected to the Hilbert
Hamiltonian H by

〈〈aα|L|bβ〉〉 = δα,β〈a|H|b〉 − δa,b〈α|H|β〉. (29)

The operatorsH and L are the sum of the free radiator op-
erator H0 (corresponding to L0) and the plasma-radiator
interaction V̂ (corresponding to V̂) (Eq. (14)). If the ions
are fixed in space, giving a net ionic field at the radiator
F, one obtains the static evolution operator

Ts(F) = 〈Ts(F)〉e =
i
π

[ωI − (L0 − V̂(F))/~+ iM(ω)]−1,

(30)

and the averaged evolution operator Tav(ω) is given in
terms of the static ionic field distribution function P (F ) by

〈T (ω)〉av =
∫ ∞

0

P (F )〈Ts(F)〉e dF. (31)

It is well-established that the ion-dynamic effects have
a large influence in the line center, specially for a line
with a central component like Lyman α. One way to

take dynamic effects into account is to use molecular dy-
namic simulations, with a consequent and controlled sam-
pling of short-range interactions. We shall use here a sim-
pler approach which consists of modeling the dynamics
of the process, as explained below. The Model Microfield
Method [44,45] assumes that the microfield is constant
during a given time interval. The microfield then jumps
instantaneously to another constant value for the next
time interval. The jumping times follow Poisson statistics,
with a field-dependent frequency ν(E). The calculation
requires knowledge of the electronic and ionic field dis-
tribution functions. The other input parameter required
is the jumping frequency ν(E), which is chosen so as
to reproduce the low-density field autocorrelation func-
tion. To calculate this field autocorrelation function, we
model the plasma in terms of µ ions [46] whose masses
are equal to the reduced masses of the pairs (radiator-
ion) and which are moving independently from each other
on trajectories, that are straight lines and hyperbolas for
neutral and ionized radiators respectively. The expression
of the jump frequency ν(F ) is taken from [46] (see also
the Addenda in the present paper). This expression sep-
arates into strong field and weak field contributions, i.e.
ν(F ) = νs(F ) + fνw(F ). The analytical expressions for
νs and νw are identical to those obtained for a neutral
radiator. In the case of an ionic radiator, the trajectory
effects are taken into account by the multiplying factor f .
This factor is equal to unity when trajectory deflexions
are negligible (weakly correlated plasmas or neutral radi-
ator). The numerical value of f is numerically obtained
from the estimation of the field covariance of the µ ions.
This model for various correlated plasmas has been tested
and discussed in several papers [47,48,50].

This model for hydrogen reproduces correctly both the
line widths and the intensity profile in the line wings [49–
51]. It has been applied with success to the ionic pro-
files and should allow us to determine the line wings, if
the electronic contribution is known. This success is due
to the fact that it includes, by construction, the features
of the field-autocorrelation function (for the relative mo-
tions) and converges towards the static limit at high den-
sities. Thus it performs a correct theoretical interpolation
for all the line shapes between the impact regime at low
density and in the line center (where the binary field-
autocorrelation function is the key parameter), and the
static approximation in the line wings and at high den-
sity.

The ionic MMM averaged expression of 〈T (ω)〉av is
given by

〈T (ω)〉av = 〈Ts(F, z)〉i + 〈νTs(F, z)〉i
×〈νI − ν2Ts(F, z)〉−1

i 〈νTs(F, z)〉i. (32)

where ν = ν(F ) and Ts(z) is the Laplace transform, at
z = ω + iν, of the evolution operator calculated for a
static ionic field. The angle brackets denote averages over
the ionic field distribution function, so that, for example

〈νTs(ω)〉 =
∫ ∞

0

P (F )ν(F )Ts(z, F ) dF. (33)
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The calculation of the operator 〈T (ω)〉av in equation (32)
involves the numerical inversion of the resolvent Ts(z, F )
due to the off-diagonal matrix elements of V̂ and M(ω).

5 Results

We shall apply our formalism to the quadrupole asymme-
try of the Lyman α line of two hydrogenic elements.

We shall first study the Lyman α line of He+ (λ0 =
304 Å, ~ω0 = 40.8 eV) for an electronic density Ne equal
to 3 × 1018 cm−3 and a temperature T = 20 000 K. The
perturbers are He+ ions. In this case, accessible for lab-
oratory studies [52], there is strong electronic screening,
with a ratio a of the electronic Debye length to the mean
distance between the electrons equal to 0.76. The correla-
tion parameter Γi = Z2e2/RikT is equal to 0.2. The elec-
tronic plasma frequency ωpe is equal to 9.8× 1013 rad/s,
which corresponds to ~ωpe = 0.064 eV. The strong field
weighting parameter f of the frequency jump ν(F ) =
νs(F ) + fνw(F ) is equal to 0.92. The Doppler width is
of the order of 10−3 eV and the broadening due to spon-
taneous emission decay is about 3.3× 10−6 eV.

The second case is the Lyman α line of Ar17+ (λ0 =
3.75 Å, ~ω0 = 3306 eV) for two values of the electronic
density Ne equal to 1024 cm−3 and 1025 cm−3. The tem-
perature T = 9.3× 106 K (kT = 800 eV). The ionic per-
turbers are Ar17+ ions. These last conditions are typical
in ICF experiments. The electronic screening is charac-
terized by screening values a equal to 0.29 and 0.43. The
correlation parameters Γi are equal to 3.3 and 7. The elec-
tronic plasma frequency ωpe is equal to 5.64× 1016 rad/s
and 1.78 × 1017 rad/s (which correspond to ~ωpe = 37
and 117 eV). The strong-field weighting parameters f of
the frequency jump is equal to 1.6 and 3.9. The Doppler
width is of the order of 0.57 eV and the broadening due
to spontaneous emission decay is about 0.021 eV.

The effect of the interaction V̂BG and V̂Q is to produce
a shift and an asymmetry of the line. Typical parameters
for the linear Stark effect, quadrupole interaction and po-
larization effects can be obtained for a perturbing charge
at the distance Ri from the radiator which creates an elec-
tric field equal to Fi = Ze/R2

i . The corresponding gradient
isGi = 2Ze/R3

i . These quantities are respectively given by

Fi = 2.6eZ1/3N2/3
e

Gi = 8.4eNe. (34)

One has, using the diagonal matrix elements of the dipole,
quadrupole and R̂2 operators given in the Appendix for
n = 2, n1 = 1, n2 = 0 (Lyman α line),

~ωD =
3ea0

ZN
Fi

~ωQ =
12ea2

0

Z2
N

Gi

~ωBG =
2πNee

2

3
36a2

0

Z2
N

(35)

or

~ωD = 5.9× 10−15Z1/3Z−1
N N2/3

e

~ωQ = 4.0× 10−22Z−2
N Ne

~ωBG = 3.0× 10−22Z−2
N Ne. (36)

In these expressions the detunings ~ωQ, ~ωD, ~ωBG are
expressed in eV for an electronic density in cm−3. Thus the
order of magnitude of the quadrupole relative to the dipole
effect, and of the background relative to the quadrupole
are equal to

ωQ/ωD = 6.8× 10−8Z−1
N Z−1/3N1/3

e

ωBG/ωQ = 0.75. (37)

One notes that the ratio of the background contribution
(Eq. (18)) to the quadrupole one does not depend explic-
itly on the charge of the plasma ions. For our selected
conditions, the relative contribution of the quadrupole is
predicted to be more important for the case of argon than
for the case of helium.

The line shift definition is not unique, even for a sim-
ple line, with only one maximum like Lyman α. One may,
for example, take the shift of the maximum of the line or
the line averaged shift. The later corresponds physically
to low-resolution experiments, but it mixes the definitions
of shifts and asymmetry. We shall use here the first defi-
nition, and focus more on the line asymmetry. The asym-
metry parameter A(∆ω) is often defined as

A(∆ω) =
I(~∆ω)− I(−~∆ω)
I(~∆ω) + I(−~∆ω)

, (38)

where the definition of the detuning ∆ω remains to be
specified. This detuning can be measured relative to the
frequency of the line in vacuum, ω0. This definition has
the disadvantage of mixing together the problems of line
shift and asymmetry and requires experimentally a good
comprehension of other sources of line shifts due to macro-
scopic motions. Thus we shall use in the following a second
definition, namely the detuning ∆ω will be taken from the
position of the maximum of the line, ω′0. We shall denote
the absolute shift of the line maximum by ∆ω′0 = ω′0−ω0.
The difference between the two asymmetry parameters
may be seen in Figure 1.

Another description of the line asymmetry may be ob-
tained by using the variations of the line bisector. A given
intensity value normalized to its maximum Imax is ob-
tained at two detunings, one in the red ∆ωred and the
other in the blue ∆ωblue. Thus the bisector position is
defined by ∆ωbis = 0.5(∆ωred +∆ωblue).

We shall focus the discussion of the theoretical results
on several points which are mainly the ion dynamic ef-
fects and the effects of V̂BG in the Hamiltonian. To cal-
culate this background contribution, we use the universal
function (BDO − BG), which when averaged over field is
zero (see Eq. (14)). The static limit is simulated by mul-
tiplying the masses of the radiator and perturbers by a
factor of 100 in the frequency jump equations. The effects
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Fig. 1. Effects of the choice of the reference frequency on the
asymmetry parameter A(∆ω), for the He+ Lyman α line (Ne =
3× 1018 cm−3, T = 20 000 K). The parameters obtained with
reference frequency ω0 and ω′0 are given in full and dashed lines
respectively. The effect of V̂BG is not included. The detuning
~∆ω is in units of 10−3 eV.

of the background will be tested by comparing the results
including and excluding V̂BG in the Hamiltonian.

The functions P , BD, BDO are obtained either from
BM or MC calculations, depending on the case. The nu-
merical estimations are noisy at high field values. Thus
these oscillations will be smoothed out for the present line
shape calculations.

The semi-classical perturbative approach, which is
used to calculate M(ω), introduces a cutoff at long dis-
tances which is not too far in the line wings, that is
given approximately by the minimum of the electronic
Debye length and |∆ω|/〈v〉. We set the imaginary part of
M(∆ω) equal to zero. This operator, calculated indepen-
dently from the ionic microfield, is diagonal in the spher-
ical harmonic basis. One has

〈1s0, 2lm|M(∆ω)|1s0, 2l′m′〉 = δl,l′δm,m′Ml(∆ω). (39)

5.1 Helium Lyman α

For the selected plasma conditions the Baranger-Mozer
and Monte Carlo statistical functions are in good agree-
ment, as indicated in [16]. Thus the line shape will be
calculated using BM microfield functions P , BD and
(BDO − BG) (see Fig. 2 and [16] for more details). One
finds BG = 0.95. In the line center (∆ω = 0), the only
non zero-diagonal electronic operator elements concern
the |1s0, 2s0〉〉 and |1s0, 2pm〉〉 Liouville states (Eq. (39)),
Ms(0) = 3.7× 1012 rad/s and Mp(0) = 1.3× 1012 rad/s.

The background and quadrupole potentials have oppo-
site signs in the Hamiltonian. Thus one expects a reduc-
tion of the quadrupole asymmetry due to the background.
This, in fact, is not so obvious due to the sign changes of
(BDO − BG) which is negative for small field values and
positive for large field values, and whose average is equal
to zero (Fig. 2). We still find a reduction in the asym-
metry, see Figure 3, which shows the variations of the
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Fig. 2. Ionic microfield functions P (full line) and (BDO−BG)
(dotted dashed line) at an He+ ion in function of the microfield
value. The microfield is normalized to the Holtsmark value F0,
for a plasma of He+ (Ne = 3× 1018 cm−3, T = 20 000 K).

-0,04

-0,03

-0,02

-0,01

0

0,01

0,02

10-1 100 101

A

h ∆ω

Fig. 3. Effect of the background contribution V̂BG on the
asymmetry parameter A(∆ω) for the He+ Lyman α line (Ne =
3× 1018 cm−3, T = 20 000 K). Full line, the asymmetry with
background; dashed line, the asymmetry without background.
The detuning ~∆ω is in units of 10−3 eV.

asymmetry with and without the background contribu-
tion. The values of the line center shifts ~∆ω0 (defined as
the shift of the line maximum) with and without inclusion
of the background are 1.5 × 10−4 eV and 1.4 × 10−4 eV
respectively. Taking BDO instead of (BDO −BG) leads to
the much lesser red shift of −1.8× 10−5 eV. Ion dynamic
effects are known to be very important for this line, be-
cause they induce strong mixing between the central and
lateral Stark components. Figure 4 indicates how the ion
dynamic effects smooth the central component as com-
pared to the static case. The halfwidth values (HWHM)
are respectively equal to 2×10−3 eV for the dynamic case
and 10−3 eV, for the static case. The effect on the asym-
metry is illustrated in Figure 5. We note a diminution of
the asymmetry due to the ion dynamic effects, see also
[18,53]. The bisector variations in Figure 6 also reflect
the ion dynamic effects and the effect of the background,
which is more important in the static case. In the reported
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Fig. 4. Ion dynamic effects on the intensity of the He+ Lyman
α line (Ne = 3 × 1018 cm−3, T = 20 000 K). Quadrupole and
background effects are included. Thick line, the dynamic pro-
file; thin line, the static profile. The detuning ~∆ω is in units
of 10−3 eV.
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Fig. 5. Ion dynamic effects on the asymmetry of the He+

Lyman α line (Ne = 3×1018 cm−3, T = 20 000 K). Quadrupole
and background effects are included. Thick line, with ion dy-
namic effects; thin line, with static ions. The detuning ~∆ω is
in units of 10−3 eV.

range of detunings, the variation of the electronic broad-
ening operator M(∆ω) does not alter the results. In the
case of He+ Lyman α, Doppler broadening may affect the
line center, but it is expected that it will not affect the line
asymmetry. Spontaneous emission effects are negligible in
the present conditions.

5.2 Argon Lyman α

The line shape will be calculated using MC field distribu-
tion functions P , BD (see [16] for more details) and BDO.
The variations of (BDO−BG) are reported, together with
those of P (β) in Figure 7. One has BG = 0.84 and 0.7
respectively at 1024 and 1025 cm−3.

In the line center (∆ω = 0), the non-zero elec-
tronic operator elements are Ms(0) = 7.1 × 1014 rad/s,
Mp(0) = 2.4 × 1014 rad/s for the low density case, and
Ms(0) = 4.4 × 1015 rad/s, Mp(0) = 1.5 × 1015 rad/s
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Fig. 6. Ion dynamic effects on the bisector detuning for the
Lyman α line of He+ (Ne = 3 × 1018 cm−3, T = 20 000 K).
The bisector ~∆ωbis and the intensity are relatively reported
on x and y-axis. The intensity is normalized to the intensity
maximum. The thick and thin lines are respectively used for
the dynamic and static ion results. Full lines, the background is
included; dashed lines, the background contribution is omitted.
The detuning ~∆ωbis is in unit of 10−3 eV.
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Fig. 7. Ionic microfield functions P (β) (full lines) and (BDO−
BG) (dotted dashed lines), calculated at an Ar17+ ion, in
function of the microfield value. The microfield is normal-
ized to the Holtsmark value F0. The plasma is composed of
Ar17+ ions at kT = 800 eV and two different electronic densi-
ties Ne = 1024 cm−3 (thin lines), and 1025 cm−3 (thick lines).

for the high density case. In the “low” density case (i.e.
at 1024 cm−3), the values of the line center shifts ~∆ω0

with and without inclusion of the background are equal
respectively to 0.081 eV and to 0.076 eV. Taking BDO in-
stead of (BDO−BG) would lead to an important red shift
of −0.49 eV.

In the “high” density case (1025 cm−3), these values
are equal to 0.63 eV, 0.43 eV and −4.3 eV respectively.

The background contribution seems to increase with
the density as can be seen from the Figures 8 and 9.
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Fig. 8. Effect of the background contribution V̂BG on the
asymmetry parameter A(∆ω) for the Ar17+ Lyman α line
(Ne = 1024 cm−3, kT = 800 eV). Full line, the asymmetry
with background; dashed line, without background. The de-
tuning ~∆ω is in eV.
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Fig. 9. Same as Figure 8 but at Ne = 1025 cm−3. The detuning
~∆ω is in eV.

The asymmetry increases strongly with the density.
This is a logical consequence of the increasing contribution
of short-range interactions at high densities.

The ion dynamic effects decrease with the density.
These effects modify strongly the line intensity (Figs. 10
and 11). The halfwidth values (HWHM) for the static
and dynamic line shapes are respectively equal to 0.23 eV
and 0.60 eV at 1024 cm−3 and to 1.3 eV and 2.7 eV at
1025 cm−3.

The ion dynamic effects are also more important at
low density, as may seen from the Figures 12 and 13.

In the reported range of detunings, the variation of
the electronic broadening operator M(∆ω) does not alter
the results in the low and high density cases. As in the
case of helium Lyman α, the Doppler effect plays a role in
the line center, but it will preserve the relative orders of
magnitude of the asymmetry parameter.
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Fig. 10. Ion dynamic effects on the intensity of the Ar17+

Lyman α line (Ne = 1024 cm−3, kT = 800 eV). Quadrupole
and background effects are included. Thick line, the dynamic
ions profile; thin line, the static ion profile. The detunings ~∆ω
is in eV and the normalized intensity in eV−1.
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Fig. 11. Same as Figure 10 but at Ne = 1025 cm−3. The
detuning ~∆ω is in eV and the normalized intensity in eV−1.
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Fig. 12. Ion dynamic effects on the asymmetry of the Ar17+

Lyman α line (Ne = 1024 cm−3, kT = 800 eV). Quadrupole
and background effects are included. Thick line, the static ion
profile; thin line, the dynamic ion profile. The detuning ~∆ω
is in eV.
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Fig. 13. Same as Figure 12 but at Ne = 1025 cm−3. The
detuning ~∆ω is in eV.

6 Conclusion

The determination of the asymmetry is a very difficult
task, as it is sensitive to several parameters, which in prac-
tice lead to partial cancellations in the profile. Moreover,
due to its small magnitude, its numerical estimation re-
quires very accurate line shape calculations. For the same
reasons it is very difficult to propose a correct physical
analysis of the experimental measurements of the asym-
metry. That is why we have restricted the present study to
the contributions of quadrupole terms and the associated
polarization terms. We have neglected fine structure and
Doppler effects and adopted a very simple description of
the electronic broadening operator.

The polarization effects, considered in this paper, must
be distinguished from those which arose in the connection
of the “plasma polarization shift” of [5,54]. Indeed, here
the plasma polarization is considered around the pertube-
rions in the frame of the microfield notions, which describe
distances larger than the size of the bound electron orbit.
On the contrary the “polarization shift theories” treat the
interaction of plasma free electrons with the radiator, and
the contribution of the penetrating collisions there is sig-
nificant.

We have shown that the polarization term plays a role
in the asymmetry. This contribution was omitted in the
previous calculations. In the present conditions it tends to
reduce the asymmetry. In the theoretical description de-
veloped here this polarization term is associated with the
universal function (BDO − BG) which has zero average
over the field distribution function. This choice, explained
in Sections 2.1 and 2.2, follows from the general consider-
ation of the plasma quasineutrality. We have also pointed
out the important role played by ion dynamics and plasma
density. Our results, as noticed in [18], show that the in-
fluence of ion motion on the asymmetry is essential, in
contrast to the conclusion of the papers [19,20]. Moreover,
there are some unexplained differences of our results with
the universal function BD(β) values calculated within BM
formalism in [19–21].
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Fig. 14. Ion dynamic effects on the bisector detuning varia-
tions, for the Ar17+ Lyman α line of Ar17+ (Ne = 1024 cm−3,
kT = 800 eV). The bisector ~∆ωbis and the intensity are rel-
atively reported on x and y-axis. The intensity is normalized
to the intensity maximum. The thick and thin lines denote the
dynamic and static results respectively. Full lines, the back-
ground is included. Dashed lines,the background contribution
is omitted. The detuning ~∆ωbis is in eV.
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Fig. 15. Same as Figure 14 but at Ne = 1025 cm−3. The
detuning ~∆ωbis is in eV.

We have given all the relevant numerical quantities
which may permit future comparisons with other theoret-
ical approaches. The next step would be to include elec-
tronic contribution to the same order in the development
of the Coulomb interaction potential.

The perturbative expansions of the Coulomb potential
lead to convergence problems at high plasma density. That
is why the molecular approach might be more suitable for
some problems in strongly coupled plasmas [55], where the
microfield approach can describe only a small portion of
the line shape.
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Appendix A: Matrix elements of Qzz and R2

The complete necessary set of the Qzz and R2 matrix
elements with respect to the parabolic wave functions of
hydrogen-like ions is presented below. It should prevent
further disseminating errors through the literature. For
example, in [19–23] the off-diagonal matrix elements of
Qzz are 3 times less than the correct results. In agreement
with [10,14,15], one has

〈n1n2m|
3Ẑ2 − R̂2

a0
2
|n1n2m〉 = − n

2

Z2
N

× [n2 − 6(n1 − n2)2 − 1], (40)

〈n1n2m|
3Ẑ2 − R̂2

a0
2
|n1 − 1, n2 + 1,m〉 = −3n2

Z2
N

× [(n− n1)n1(n2 + 1)(n− n2 − 1)]1/2, (41)

〈n1n2m|
3Ẑ2 − R̂2

a0
2
|n1 + 1, n2 − 1,m〉 = −3n2

Z2
N

× [(n− n2)n2(n1 + 1)(n− n1 − 1)]1/2, (42)

〈n1n2m|
R̂2

a0
2
|n1n2m〉 =

n2

2Z2
N

× [2n2 + 3n+ 3(n− 1)(n1 + n2)− 6n1n2 + 1], (43)

〈n1n2m|
R̂2

a0
2
|n1 − 1, n2 + 1,m〉 =

3n2

2Z2
N

× [(n− n1)n1(n2 + 1)(n− n2 − 1)]1/2, (44)

〈n1n2m|
R̂2

a0
2
|n1 + 1, n2 − 1,m〉 =

3n2

2Z2
r

× [(n− n2)n2(n1 + 1)(n− n1 − 1)]1/2. (45)

Addenda

We report a misprint in Figure 2 of [17]. The upper num-
ber on the ordinate axis should be 2 instead of the mis-
print 10.

The expression of the jump frequency ν(F ) taken from
the expressions (17, 24) of [46] is inexact. The factor
(160x)1/5 should be replaced by (40x)1/5.
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Coulomb Systems, edited by G. Kalman, K. Blagoev, M.
Rommel (AIP, New York, 1998), p. 377.
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